امروز: جمعه 30 اردیبهشت 1401
مقاله تعاریف و ویژگی‌های بنیادی توابع مثلثاتی
دسته بندی ریاضی
بازدید ها 2,091
فرمت فایل doc
حجم فایل 168 کیلو بایت
تعداد صفحات فایل 27
9,360 تومان
مقاله تعاریف و ویژگی‌های بنیادی توابع مثلثاتی

دانش‌آموزان اولین چیزی را كه در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است كه شناسه‌های (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دوره‌های پیشدانگاهی مشكل می‌رسد.

با ملاحظه توابع كمانی مفهوم تابع مثلثاتی نیز تعمیم داده می‌شود. در این بررسی دانش‌آموزان با كمانی‌هایی مواجه خواهند شد كه اندازه آن‌ها ممكن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است كه اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان كه اندازه‌ای معمولی‌تر است تبدیل می‌شود. در حقیقت تقسیم یك دور دایره به 360 قسمت (درجه) یك روش سنتی است.

اندازه زاویه‌ها برحسب رادیان بر اندازه طول كمان‌های دایره وابسته است. در اینجا واحد اندازه‌گیری یك رادیان است كه عبارت از اندازه یك زاویه مركزی است. این زاویه به كمانی نگاه می‌كند كه طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یك زاویه بر حسب رادیان عبارت از نسبت طول كمان مقابل به زاویه بر شعاع دایره‌ای است كه زاویه مطروحه در آن یك زاویه مركزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز می‌گویند. از آنجا كه محیط دایره‌ای به شعاع واحد برابر  است از اینرو طول كمان  برابر  رادیان خواهد بود. در نتیجه  برابر  رادیان خواهد شد....

 

فایل های مرتبط ( 24 عدد انتخاب شده )

بالا